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OVERVIEW

During the last year, several novel millimeter-wave sources have been further
developed.

(1) Stable operation of a high performance, dielectric-loaded wideband gyro-TWT
has been experimentally demonstrated. For a 90 kV, 5 A, a = vjvz = 0.6 electron beam
produced by a single-anode MIG electron gun, a peak output power of 55 kW with 11%
efficiency, 27 dB saturated gain and an unprecedented constant-drive bandwidth of 11% has
been achieved in the X-band frequency proof-of principle experiment.

(2) A third-harmonic slotted peniotron oscillator experiment has been built, based on
Dr. A.T. Lin's recent simulation results, which predict a substantial conversion efficiency of
45%. The peniotron was designed to be driven by the same axis-encircling electron beams
that are currently used to drive our third-harmonic slotted gyro-TWT amplifier.

(3) In addition, we built a high power, 35 GHz ultra-short-pulse prebunched FEL
cicuit. It will be driven by the 3.5 MeV, 100 pC, 3 ps electron beam bunches produced by the
X-band photocathode rf linac that we have begun to construct. The prebunched FEL is
predicted to be highly efficient because all electrons in the short electron bunch give up
energy to the wave. The short-pulse electron beam can thereby emit a broadband chirped
ultra-short rf pulse with a center frequency exceeding 250 GHz. The first stage of the high
power 100 fsec laser has been successfully tested.

A. Wideband Gyro-TWT

Future high resolution radar and high speed communication systems require
wideband high power microwave or millimeter-wave amplifiers. The gyro-TWT has
received considerable attention because of its high power capability. However, the
constant-drive bandwidth of a conventional gyro-TWT is limited to roughly 3% due to the
circuit's dispersion. Over the last two years, we have designed and constructed a gyro-
TWT that was predicted to yield a significantly broader bandwidth. The features of this
amplifier were described in the preceeding progress report. Its circuit had been loaded with
dielectric to reduce the waveguide's dispersion so that the beam's cyclotron resonance line
was tangent to an electromagnetic mode over a large frequency range. During the last year,
we successfully tested this broadband gyro-TWT and achieved significant results.

A schematic of the microwave diagnostic system is shown in Fig. 1. The input rf is
provided by a sweep oscillator and amplified by two cascaded helix TWT amplifiers with a
minimum power of 1 kW to drive the gyro-TWT into saturation. Both the input and output if
peak powers are measured by diode detectors along with directional couplers and precision
variable attenuators. The rf signal coming out of the input port is also measured with a
similar setup to monitor any possible gyro-BWO type oscillations. All of the components
were calibrated with an HP8510B automated network analyzer and an HP438A precision
power meter, yielding an estimated accuracy of ±0.5 dB for the power measurements.

The magnetic field was adjusted to give maximum output power at 9.4 GHz and then
measurements were made at other frequencies under the same operating conditions. The
operating parameters are listed in Table 1. The transfer curves for the amplifier are shown in
Fig. 2 for several values of beam current Io. The small-signal dependence of gain on current
fits the usual Iol/3 scaling. The bandwidth is shown in Fig. 3. An unprecedented constant-
drive bandwidth of 11% has been achieved with a peak power of 55 kW, 11% efficiency and a
saturated gain of 27 dB. By comparing to our simulation code predictions shown in Fig. 4,
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the measured 11% constant-drive bandwidth implies that the electron beam has an axial
velocity spread of approximately 4%. By taking the envelope of Fig. 3, the amplifier's
saturated bandwidth is found to be 15%.

Of extreme importance, the amplifier was found to be stable for zero input power,
which is a necessary condition for any high performance amplifier. However, oscillations in
the operating mode due to both forward-wave and backward-wave interactions (gyro-
BWO) could be excited separately by increasing the magnetic field. Figure 5 shows the
magnetic field value at which the device becomes unstable. By digitizing the output signal,
the amplifier's spectrum was found to equal the minimum transform limit for the 1.2 ps pulse.
As seen in Fig. 6, the output spectrum is an accurate representation of the input signal. By
mixing the output signal with the input in a double-balanced mixer, the phase stability of the
amplifier was found to be 40"/kV as shown in Fig. 7.

Although the current bandwidth of 11% is quite substantial, our simulation results in
Fig. 4 predict that the bandwidth can be further enhanced with improved beam quality. A
20% constant-drive bandwidth is predicted for a 2% axial velocity spread. The present
design can be directly scaled to millimeter-wave frequencies. However, for high average-
power applications, a corrugated metallic waveguide would be utilized. We will test such a
structure in the future.

B. Third-Harmonic Peniotron

There is currently intense interest in the development of slotted high-harmonic
peniotron amplifiers, because 1) peniotrons are theoretically extremely efficient, 2) harmonic
operation allows the required magnetic field to be reduced significantly, and 3) the slotted
circuit shown in Fig. 8 greatly ameliorates the electron energy requirement. An important
issue is whether the competing gyrotron interactions will dominate and thereby degrade the
desired peniotron interaction. The purpose of our slotted third-harmonic peniotron
experiment is to address this issue in order to develop the harmonic peniotron into an
efficient millimeter-wave source. Due to the exciting simulation results of our colleague Dr.
A.T. Lin, we have modified our planned high-harmonic penio-TWT amplifier into a third-
harmonic peniotron oscillator experiment. Using a PIC code and electron beam parameters
that are readily accessible to our test-stand, Dr. Lin found that a third-harmonic peniotron in
an 8-vane travelling-wave circuit could yield an efficiency of 45% if the third-harmonic
cyclotron resonance line intersects the it-mode at its cutoff frequency. Although gyrotron
interactions usually dominate, the peniotron interaction dominates this new system due to
the nonresonant matched circuit, where interactions near their cutoff are emphasized, and
extremely high efficiency is obtained. Figure 9 shows the growth in time and space of the
45% efficient, third-harmonic peniotron studied by Dr. Lin. It is evident that the excited
wave travels in the same direction as the electron beam. The competing gyrotron interaction
remains at a low level. An interesting question that we will experimentally address is
raised by Dr. Lin's simulation result: What produces the necessary feedback in this
oscillator where the wave and beam travel in the same direction?

We have built an 8-vane third-harmonic peniotron experiment, which uses the
electron beam and circuit parameters from Dr. Lin's simulation. The circuit was fabricated
by electric discharge wire machining. The design parameters are listed in Table 2. A
schematic of the circuit is shown in Fig. 10. So that the interaction structure is a
nonresonant, travelling-wave circuit, it is crucial that it be terminated at both ends. The
electron gun end of the circuit is an attenuator formed by placing lossy dielectric wedges in
the slots. On the collector end, the circuit tapers into a four-period, beat-wave mode
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converter which transforms the TE41 mode into the more useful TE 1 mode. The measured
behavior of this converter is shown in Fig. 11. The TE II wave is then transformed into the
common TE1 0 fundamental mode of rectangular waveguide and then into either a
transmitting antenna or a load.

The peniotron will be driven by the axis-encircling electron beams produced by our
high current gyroresonant rf accelerator. Since the beam parameters for the experiment
(Table 2) are the same as used in our current if-accelerated, third-harmonic slotted gyro-
TWT amplifier experiment, the same accelerator cavity will be used. The acceleration
characteristics of the TE111 cavity are shown in Fig. 12. The slotted peniotron experiment
will be performed after the slotted gyro-TWT experiment has been concluded. The
performance of the third-harmonic peniotron will be compared to the behavior of the third-
harmonic gyro-TWT.

C. Ultra-Short-Pulse Prebunched FEL

Ultra-short, high-power pulses of coherent submillimeter-wave radiation have
numerous applications, ranging from surface and material physics to the next generation of
ultra-wideband radars. We have begun to develop a source that will generate an extremely
short pulse wave. It is driven by an electron beam created in a photocathode rf linac, where
the beam's pulsewidth is determined by the pulsewidth of the laser. The short-pulse
electron beam then efficiently transfers its energy in a prebunched FEL interaction. Since
the width of the beam is much shorter than the wavelength of the generated wave, all
electrons are in a decelerating phase and lose energy. The 100 Jim width photo-electron
beam from a 100 fsec Ti-sapphire laser (frequency multiplied to the UV) can thereby be
used to emit a broadband chirped ultra-short rf pulse with a center frequency exceeding 250
GHz. For highly efficient conversion, the FEL wiggler should be tapered in the saturation
region.

We have begun to construct a photocathode rf linac. A schematic of the setup is
shown in Fig. 13. The aluminum photocathode will be excited by a self mode-locked,
externally phase-locked, 100 fs, 100 mJ, frequency-tripled UV Ti:Sapphire laser. The first
stage of the laser has already been successfully tested. The linac will be driven by our 20
MW, 8.568 GHz SLAC klystron. The klystron's modulator has been used previously. A
special feature of this novel rf gun is that the photocathode is also a mirror in a ring-
resonator so that the quantum efficiency of the photocathode is enhanced by multiple passes
of the UV radiation. A train of electron micropulses will be created rather than just one
pulse.

We have developed a linear theory of the prebunched FEL interaction. The analysis
is appropriate for an interaction either in free-space or in waveguide. For a point charge and
a free-space interaction in a twenty period wiggler, the normalized frequency spectrum is
shown in Fig. 14. The spectrum is similar to that from a conventional non-prebunched FEL.
However, the amplitude is orders of magnitude higher. Figure 15 shows the predicted fall-
off of the output power as the bunch width Az becomes comparable to the wavelength. For a
grazing intersection between the beam and wave, there is no slippage between them and the
width of the wave-packet is determined by the transform limit of the FEL bandwidth and the
dispersion of the waveguide. The output pulsewidth of 50 ps predicted for our 35 GHz,
proof-of-principle experiment is shown in Fig. 16.

The experiment was designed for a grazing interaction. The parameters for the
experiment are listed in Table 3. The tapered 3 kG, pulsed helical wiggler with a period of
8.4 cm and a length of 2 m was tested and the field component in one plane is shown in Fig.
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17. Several diagnostics have been assembled. A fluorescent glass Faraday Cup will allow
the measurement of the time-integrated beam current. The 35 GHz output nower will be
measured by using a calibrated Ka-band pick-up probe and a series of long waveguide
attenuators. The 40-60 GHz waveguide will also be used as a dispersive delay line to
expand the -50 ps broadband pulse to a more measurable 10 ns. A Ka-band interferometer
will be used to view the actual pulsewidth.
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